The best Side of المعين
The best Side of المعين
Blog Article
تمت الكتابة بواسطة: دينا الرقطي آخر تحديث: ١٢:٢٥ ، ٥ سبتمبر ٢٠٢١ ذات صلة قانون حساب مساحة المعين
عند توصيل نقاط المنتصف لأضلاع المعين مع بعضها يمكننا الحصول على مستطيل داخل المعين.
المعين هو من click here الأشكال الهندسية الرباعية؛ أي أنه يتكون من أربعة أضلاع، وهو يشبه متوازي الأضلاع، لكن يختلف عنه في أن أطوال أضلاعه تكون متساويةً، له أربع زاويا، كل زاويتين متقابلتين فيه تكون متساويتين، وكل ضلعين متقابلين فيه متوازيان.
يُكتب المحتوى على ويكي هاو بأسلوب الويكي أو الكتابة التشاركية؛ أي أن أغلبية المقالات ساهم في كتابتها أكثر من مؤلف، عن طريق التحرير والحذف والإضافة للنص الأصلي.
المربع: أقطاره متساوية في الطول، كما أنها تنصف بعضها البعض في زاوية قائمة.[٣]
قطراه متعامدان وينصفان زواياه، ويشكلان محوري تناظر للمعين.
يمكن أيضاً حساب ارتفاع المعين اعتماداً على قِيَم الأقطار، بالإضافة إلى طول أحد أضلاع المعين، وقيمة المساحة، وذلك باستخدام المعادلتين الآتيتين:[٢]
هناك العديد من طرق حساب مساحة المعين التي يمكن استخدامها بكل سهولة عند معرفة المعطيات اللازمة لكل طريقة، فمساحة المعين تُعبّر عن المنطقة المحصورة بين أضلاعها الأربعة والتي تكون بالوحدة المربعة، ومن أبرز طرق حساب مساحة المعين ما يأتي: استخدام طول الأقطار
فتح المعين بشرح قرة العين بمهمات الدين للإمام أحمد زين الدين بن عبد العزيز المَعْبَري المليباري الفَنَّاني الشافعي by
العلوم الطبيعية، الرياضيات ما الفرق بين خصائص المعين والمربع؟
لحساب محيط المعين علينا إيجاد مجموع أطوال أضلاعه وبما أن جميع أضلاع المعين كالمربع متساوية في طولها؛ يمكن التعبير عن محيط المعين بالعلاقة:[٢]
هذه بذرة مقالة عن الهندسة الرياضية بحاجة للتوسيع. فضلًا شارك في تحريرها.
يحمل المعين جميع خواص متوازي الأضلاع، بالإضافة إلى هذه الخصائص:
يعتبر حالةً خاصّةً من متوازي الأضلاع وحالةٌ خاصّةٌ من الدالتون.
انتقل إلى المحتوى القائمة الرئيسية القائمة الرئيسية
Report this page